APPROXIMATE POINT SPECTRUM OF A WEIGHTED SHIFT

WILLIAM C. RIDGE

Notation. If T is a Hilbert space operator, let $\Lambda(T)$ denote its spectrum, $\Pi(T)$ its approximate point spectrum, $\Pi_0(T)$ its point spectrum, $\Gamma(T)$ its compression spectrum, m(T) its lower bound (i.e., $\inf\{\|Tx\|/\|x\|:x\neq 0\}$), and r(T) its spectral radius. Let i(T) denote $\sup_n m(T^n)^{1/n}$, which equals $\lim_n m(T^n)^{1/n}$.

Let R denote a weighted right shift on l_+^2 , defined by $Re_n = s_n e_{n+1}$, where (e_n) is an orthonormal basis of l_+^2 , $n=1, 2, \ldots$ Let L denote its adjoint, a weighted left shift. Let B denote a weighted two-sided shift on l^2 , defined by $Be_n = s_n e_{n+1}$, $n=0,\pm 1,\pm 2,\ldots,$ (e_n) here being an orthonormal basis of l^2 . If B has purely nonzero weights (s_n) , then let

$$i(B)^- = \lim_{n} \inf_{k \le 0} |s_{k-1} \cdots s_{k-n}|^{1/n}, \qquad i(B)^+ = \lim_{n} \inf_{k \ge -1} |s_{k+1} \cdots s_{k+n}|^{1/n},$$

$$i(B)^{-} = \lim_{n} \inf_{k \le 0} |s_{k-1} \cdots s_{k-n}|^{1/n}, \qquad i(B)^{+} = \lim_{n} \inf_{k \ge -1} |s_{k+1} \cdots s_{k+n}|^{1/n},$$

$$r(B)^{-} = \lim_{n} \sup_{k \le 0} |s_{k-1} \cdots s_{k-n}|^{1/n}, \qquad r(B)^{+} = \lim_{n} \sup_{k \ge -1} |s_{k+1} \cdots s_{k+n}|^{1/n}.$$

Background. Λ and its parts, for weighted shifts, are known to have circular symmetry about 0; $\Pi_0(R)$ is known to be empty or $\{0\}$; $\Gamma(R)$ is known to be a disk, possibly degenerating to $\{0\}$; and $\Gamma(B)$ and $\Pi_0(B)$ are known to be annuli, possibly degenerate or empty, and in any case disjoint. These facts are easy to verify, and are proved in [3]. Also proved there is the much deeper fact that the spectrum of a weighted shift is always connected. This will also be deduced in this paper as an easy corollary of the results on the approximate point spectrum. Some of these results, from a different approach, seem to have been concurrently proved in [1].

The following formulae are easy to verify [3]:

$$i(R) = \lim_{n \to k} \inf_{k} |s_{k+1} \cdots s_{k+n}|^{1/n}, \qquad r(R) = \lim_{n \to k} \sup_{k} |s_{k+1} \cdots s_{k+n}|^{1/n}.$$

Preliminaries. The following propositions can be verified by routine arguments [4].

- (1) Suppose (for R) that no s_n vanishes and ϵ , M are positive numbers. Then there are integers k and n, both greater than M, such that $|s_{k+1}\cdots s_{k+n}|^{1/n} > r(R) - \varepsilon$.
 - (2) For any positive numbers A, B, C, D,

$$\frac{A+B}{C+D} \leq \operatorname{maximum}\left(\frac{A}{C}, \frac{B}{D}\right).$$

(3) Suppose (p_n) is a real nonnegative periodic sequence having period r, and $q = (p_1 \cdots p_r)^{1/r}$. Suppose (a_n) is a real nonnegative sequence such that $\lim_n (a_n - p_n) = 0$. If either some p_n vanishes, or no a_n vanishes, then

$$\lim_{n} \inf_{k} (a_{k+1} \cdots a_{k+n})^{1/n} = \lim_{n} \sup_{k} (a_{k+1} \cdots a_{k+n})^{1/n} = q.$$

- (4) Suppose (for B) that no s_n vanishes. Then $i(B) = \min (i(B)^-, i(B)^+)$ and $r(B) = \max (r(B)^-, r(B)^+)$.
 - (5) For any operator T, $\Pi(T) \subseteq \{c : i(T) \le |c| \le r(T)\}$.

THEOREM 1. If no s_n vanishes, then $\Pi(R) = \{c : i(R) \le |c| \le r(R)\}$. If finitely many s_n vanish, then $\Pi(R) = \{0\} \cup \Pi(R')$, where R' is the right shift with weights s_{k+1} , s_{k+2}, \ldots , where s_k is the last zero weight. If infinitely many s_n vanish, then

$$\Pi(R) = \{c : |c| \le r(R)\}.$$

Proof. If i(R) = r(R), then $\Pi(R)$ is by (5) contained in, hence by nonemptiness and circular symmetry equal to, $\{c : |c| = r(R)\}$.

Suppose no s_n vanishes, and i(R) < c < r(R). Since $\Pi(R)$ is closed and has circular symmetry, it suffices in view of (5), for the first assertion of the theorem, to show that c is necessarily in $\Pi(R)$.

Choose numbers a, b such that i(R) < a < c < b < r(R), and suppose $\varepsilon > 0$. Choose n such that $(c/b)^n < \varepsilon$ and k such that $|s_{k+1} \cdots s_{k+n}|^{1/n} > b$. By (1) choose p such that $(a/c)^p < \varepsilon$ and m such that m > n + k and $|s_{m+1} \cdots s_{m+p}|^{1/p} < a$.

Define $x = (x_i)$ by

$$x_{k+1} = 1,$$

$$x_r = \frac{s_{k+1} \cdots s_{r-1}}{c^{r-k-1}} \quad \text{if } k+2 \le r \le m+p+1,$$

$$x_r = 0 \qquad \qquad \text{if } r < k+1 \text{ or } r > m+p+1.$$

Then

$$Rx - cx = \sum_{r=k+1}^{m+n+1} \left(\frac{s_{k+1} \cdots s_r}{c^{r-k-1}} e_{r+1} - \frac{s_{k+1} \cdots s_{r-1}}{c^{r-k}} e_r \right)$$

 $= s_{m+p+1}x_{m+p+1}e_{m+p+2}-ce_{k+1},$

and hence

$$||Rx - cx||^2 = |s_{m+p+1}|^2 |x_{m+p+1}|^2 + c^2$$

$$\leq ||R||^2 (1 + |x_{m+p+1}|^2).$$

Also

$$||x||^2 = \sum |x_i|^2 \ge |x_{k+n+1}|^2 + |x_{m+1}|^2.$$

But

$$|x_{k+n+1}| = |s_{k+1} \cdots s_{k+n}|/c^n > (b/c)^n > 1/\varepsilon$$

and

$$|x_{m+p+1}/x_{m+1}| = |s_{m+1}\cdots s_{m+p}|/c^n < (a/c)^p < \varepsilon.$$

So by (2),

$$\begin{split} \frac{\|Rx - cx\|^2}{\|x\|^2} &\leq \|R\|^2 \, \frac{1 + |x_{m+p+1}|^2}{|x_{k+n+1}|^2 + |x_{m+1}|^2} \\ &\leq \|R\|^2 \max\left(\frac{1}{|x_{k+n+1}|^2}, \left|\frac{x_{m+p+1}}{x_{m+1}}\right|^2\right) \\ &< \varepsilon^2 \|R\|^2 \end{split}$$

and so c is in $\Pi(R)$.

Now suppose infinitely many s_n vanish, and suppose 0 < c < r(R). The last assertion of the theorem will follow if we show that, necessarily, c is in $\Pi(R)$.

Choose b such that c < b < r(R). Given $\varepsilon > 0$, choose n such that $(c/b)^n < \varepsilon$ and k such that $|s_{k+1} \cdots s_{k+n}|^{1/n} > b$. Let r be the first index greater than k+n such that $s_r = 0$. Define $x = (x_i)$ by

$$x_{k+1} = 1,$$

$$x_m = \frac{s_{k+1} \cdots s_{m-1}}{c^{m-k-1}} \quad \text{if } k+2 \le m \le r,$$

$$x_m = 0 \quad \text{if } m \le k \text{ or } m > r.$$

Then $Rx - cx = ce_{k+1}$, ||Rx - cx|| = c, and

$$||x|| \ge |x_{k+n+1}| = |s_{k+1} \cdots s_{k+n}|/c^n > (b/c)^n > 1/\varepsilon$$

so $||Rx-cx||/||x|| < c\varepsilon$, and c is in $\Pi(R)$.

If finitely many s_n vanish, then R is the orthogonal sum of R' and a nilpotent operator, and $\Pi(R) = \Pi(R') \cup \{0\}$; applying the earlier argument for nonzero weights to R', we have the second assertion.

COROLLARY (KELLEY).
$$\Lambda(R) = \{c : |c| \le r(R)\}.$$

Proof. Π contains the boundary of Λ , which is therefore either the annulus Π or the closed disk of radius r(R); it is the latter since 0 is in $\Gamma(R)$.

DEFINITION. A sequence (a_n) is almost periodic if there is a periodic sequence (p_n) such that $\lim_n (a_n - p_n) = 0$. If r is the period of (p_n) , the periodic mean is $(p_1 \cdots p_r)^{1/r}$.

THEOREM 2. If $(|s_n|)$ is almost periodic, then $\Pi(R) = \{c : |c| = q\}$ if all s_n are non-zero, and is the same set together with $\{0\}$ if some s_n vanishes; in either case $\Lambda(R) = \{c : |c| \le q\}$, where q is the periodic mean of the approximating periodic sequence (p_n) .

Proof. The last statement follows from the first two by the corollary to Theorem 1.

If either some p_n vanishes or no s_n vanishes, then i(R) = r(R) = q by (3), and $\Pi(R)$ is as asserted by Theorem 1.

Suppose no p_n vanishes, but some s_n vanishes. Then only finitely many s_n vanish, since $\lim_n (|s_n| - p_n) = 0$ and (p_n) , assuming only finitely many distinct values, is bounded away from 0. Theorem 1 now applies again, and $\Pi(R)$ is as asserted.

COROLLARY 1. If R is injective and $|s_n| \to s$, then

$$\Pi(R) = \{c : |c| = s\} \quad and \quad \Lambda(R) = \{c : |c| \le s\}.$$

COROLLARY 2. If $(|s_n|)$ is periodic with mean a, then

$$\Pi(R) = \{c : |c| = q\} \text{ and } \Lambda(R) = \{c : |c| \le q\}.$$

Example. Let T=subdiagonal (1, 2, 1, 2, ...). By Corollary 2,

$$\Pi(T) = \{c : |c| = \sqrt{2}\} \text{ and } \Lambda(T) = \{c : |c| \le \sqrt{2}\}.$$

Note. If some $s_n = 0$ for B, then B is the orthogonal sum of a right and a left shift, and their approximate point spectra are described elsewhere in this paper. In treating B below, we therefore assume that no s_n vanishes.

THEOREM 3. If $r(B)^- < i(B)^+$, then

$$\Pi(B) = \{c : i(B)^+ \le |c| \le r(B)^+ \text{ or } i(B)^- \le |c| \le r(B)^-\}.$$

Otherwise $\Pi(B) = \{c : i(B) \le |c| \le r(B)\}.$

Proof. Since $\Pi(B)$ is closed and has circular symmetry, in view of (4) and (5) we need only consider positive c lying between any two of the values $i(B)^-$, $i(B)^+$, $r(B)^-$ and $r(B)^+$.

If $i(B)^+ < c < r(B)^+$, then exact imitation of the construction of Theorem 1 (with $i(B)^+ < a < c < b < r(B)^+$) yields approximate eigenvectors for c. So

$$\{c: i(B)^+ \leq |c| \leq r(B)^+\} \subset \Pi(B).$$

Suppose $i(B)^- < c < r(B)^-$. Choose numbers a, b such that $i(B)^- < a < c < b < r(B)^-$. Choose p such that $(a/c)^p < \varepsilon$ and m < -p such that $|s_{m+1} \cdots s_{m+p}|^{1/p} < a$. Choose p such that $(c/b)^n < \varepsilon$ and, by (1), choose k < m-n such that $|s_{k+1} \cdots s_{k+n}|^{1/n} > b$. Define p as in the proof of Theorem 1, and again we find p $\in \Pi(B)$. So

$${c: i(B)^- \le |c| \le r(B)^-} \subset \Pi(B).$$

Suppose $r(B)^+ < c < i(B)^-$. Choose a, b, n, p as before; choose k < -n such that $|s_{k+1} \cdots s_{k+n}|^{1/n} > b$, and $m \ge 0$ such that $|s_{m+1} \cdots s_{m+p}|^{1/p} < a$. Proceeding as in the proof of Theorem 1, we find that c is in $\Pi(B)$. So if $r(B)^+ \le i(B)^-$, then

$${c: r(B)^+ \leq |c| \leq i(B)^-}$$

is contained in $\Pi(B)$.

Suppose $r(B)^- < c < i(B)^+$. We show that c is not in $\Pi(B)$. Suppose it were. Choose b strictly between c and $i(B)^+$. Then for some N we have, for all $n \ge N$ and $k \ge 1$, $|s_{k+1} \cdots s_{k+n}|^{1/n} > b$. For all positive ε , choose a unit vector $x = x(\varepsilon)$ such that $||Bx - cx|| < \varepsilon$.

Suppose there exists a sequence $\varepsilon' \to 0$ such that $x_0(\varepsilon')$ (the 0th coefficient of $x(\varepsilon')$) converges to 0. Then for any positive ε we have, for some choice of ε' , $||Bx-cx|| < \varepsilon$ and $|x_0| < \varepsilon$. Let $x^0 = x_0 e_0$ and $x^1 = x - x^0$. Then

$$||Bx^{1}-cx^{1}|| \le ||Bx-cx|| + ||Bx^{0}-cx^{0}|| \le \varepsilon + 2||B||\varepsilon.$$

We may therefore choose approximating eigenvectors $x(\varepsilon)$ such that x_0 always vanishes.

For such x, let

$$x^{-} = \sum_{n < 0} x_n e_n, \qquad x^{+} = x - x^{-} = \sum_{n > 0} x_n e_n.$$

Then Bx^- and cx^- are both orthogonal to Bx^+ and cx^+ , so Bx-cx is the orthogonal sum of Bx^--cx^- and Bx^+-cx^+ . Both of the latter have norms therefore less than ϵ . Either x^- or x^+ has norm at least 1/2. It follows that approximate eigenvectors can be chosen from either 1_+^2 or 1_-^2 . In the former case c is in $\Pi(R^+)$ where R^+ is the right shift having the positively indexed weights of B. By direct comparison of formulae (in terms of s_n), $i(B)^+ = i(R^+) \le |c| \le r(R^+) = r(B)^+$, contrary to hypothesis.

In the latter case, c is in $\Pi(L^-)$, where L^- is the left shift with weights $t_n = s_{-n}$. Then $|c| \le r(L^-) = r(B)^-$, again a contradiction.

So there is a positive number d such that, for some sequence $\varepsilon' \to 0$, $|x_0(\varepsilon')| \ge d$ for all ε' .

If $n \ge N$ then

$$|s_0\cdots s_{n-1}x_0|/c^n>(b/c)^nd.$$

Also, using the Cauchy-Schwarz inequality,

$$\begin{aligned} \left| x_{n} - \frac{s_{0} \cdots s_{n-1} x_{0}}{c^{n}} \right| &\leq \left| x_{n} - \frac{s_{n-1} x_{n-1}}{c} \right| + \left| \frac{s_{n-1} x_{n-1}}{c} - \frac{s_{n-1} s_{n-2} x_{n-2}}{c^{2}} \right| \\ &+ \cdots + \left| \frac{s_{n-1} \cdots s_{1} x_{1}}{c^{n-1}} - \frac{s_{n-1} \cdots s_{0} x_{0}}{c^{n}} \right| \\ &\leq \frac{1}{c} \left(\left| c x_{n} - s_{n-1} x_{n-1} \right|^{2} + \cdots + \left| c x_{1} - s_{0} x_{0} \right|^{2} \right)^{1/2} \\ & \cdot \left(1 + \left| \frac{s_{n-1}}{c} \right|^{2} + \cdots + \left| \frac{s_{n-1} \cdots s_{1}}{c^{n-1}} \right|^{2} \right)^{1/2} \\ &\leq \frac{1}{c} \left\| B x - c x \right\| \left(1 + \left[\frac{\|B\|}{c} \right]^{2} + \cdots + \left[\frac{\|B\|}{c} \right]^{2(n-1)} \right)^{1/2} \\ &\leq \frac{\varepsilon}{c} \left[\frac{\left(\|B\|/c \right)^{2n} - 1}{\left(\|B\|/c \right)^{2} - 1} \right]^{1/2} \cdot (*) \end{aligned}$$

Fix $n \ge N$ such that $(b/c)^n d > 2$, then choose $\varepsilon > 0$ such that $(*) \le 1$. We then have

$$|x_n| \ge \left| \frac{s_0 \cdots s_{n-1} x_0}{c^n} \right| - \left| \frac{s_0 \cdots s_{n-1} x_0}{c^n} - x_n \right| > 1$$

which is impossible since x is a unit vector.

Therefore c is not in $\Pi(B)$, and the theorem now follows.

COROLLARY. Either $\Pi(B)$ or $\Pi(B^*)$ is connected.

Proof. Suppose $\Pi(B)$ is disconnected. Then $i(B^*)^+ \le r(B^*)^+ = r(B)^- < i(B)^+ = i(B^*)^- \le r(B^*)^-$ so $\Pi(B^*)$ is connected.

THEOREM 4. If $\Pi_0(B)$ is nonempty, then $\Pi(B)$ is connected. If $\Pi(B)$ is disconnected, then $\Gamma(B)$ is an annulus whose boundary components are contained in distinct components of $\Pi(B)$.

Proof. If $\Pi_0(B)$ is nonempty, then by [3] (or straightforward computation), it is an annulus, centered at 0, of inner radius $p_1(B) = \limsup_n |s_1 \cdots s_n|^{1/n}$ and outer radius $p_2(B) = \liminf_n |s_1 \cdots s_n|^{1/n}$; by direct substitution in terms of s_i , and standard inequalities among various limits, we have $i(B)^+ \le p_1(B) \le p_2(B) \le r(B)^-$; $\Pi(B)$ is then connected by Theorem 3.

Also, $\Gamma(B)$ is an annulus of inner radius $c_1(B) = \limsup_n |s_{-1} \cdots s_{-n}|^{1/n}$ and outer radius $c_2(B) = \liminf_n |s_1 \cdots s_n|^{1/n}$ provided that $c_1(B) \le c_2(B)$. If $\Pi(B)$ is disconnected, then by Theorem 3 and standard inequalities among limits, $i(B)^- \le c_1(B) \le r(B)^- < i(B)^+ \le c_2(B) \le r(B)^+$. The second assertion now follows.

COROLLARY (KELLEY). $\Lambda(B)$ is connected.

Proof. $\Lambda = \Pi \cup \Gamma$.

THEOREM 5. Suppose $(|s_n|)$ and $(|s_{-n}|)$, n>0, are almost periodic with approximating periodic means q^+ and q^- , respectively. If $q^+ \le q^-$, then $\Lambda(B) = \Pi(B) = \{c: q^+ \le |c| \le q^-\}$. If $q^- < q^+$, then $\Lambda(B) = \{c: q^- \le |c| \le q^+\}$ and

$$\Pi(B) = \{c : |c| = q^- \text{ or } |c| = q^+\}.$$

Proof. By (3), $i(B)^+ = r(B)^+ = q^+$ and $i(B)^- = r(B)^- = q^-$. All assertions now follow from Theorems 3 and 4.

COROLLARY. Suppose $a = \lim |s_{-n}|$ and $b = \lim |s_n|$ as $n \to +\infty$. If $b \le a$ then $\Lambda(B) = \Pi(B) = \{c : b \le |c| \le a\}$. If a < b then $\Lambda(B) = \{c : a \le |c| \le b\}$ and

$$\Pi(B) = \{c : |c| = a \text{ or } |c| = b\}.$$

Example (Kelley). $s_n = 1$ for negative n, and 2 for positive n. Then

$$\Lambda(B) = \{c : 1 \le |c| \le 2\}$$
 and $\Pi(B) = \{c : |c| = 1 \text{ or } |c| = 2\}.$

THEOREM 6. $\Pi(L) = \Lambda(L) = \Lambda(R)$.

Proof. The second inequality holds because L and R are adjoint to each other. $\Gamma(L)$, being equal to $\Pi_0(R)$, is either empty or $\{0\}$. Since $\Lambda = \Pi \cup \Gamma$, either $\Pi(L) = \Lambda(L)$ or $\Pi(L) = \Lambda(L) - \{0\}$. But the latter case is impossible. For by the corollary (Kelley) to Theorem 1, either $\Lambda(L) = \{0\}$, in which case $\Pi(L)$ would be empty, or $\Lambda(L)$ is a disk of positive radius, in which case $\Pi(L)$ would fail to be closed.

LEMMA 7. If i, c, r are any three numbers with $0 \le i \le c \le r$, then there is a positive sequence (s_n) such that

$$\lim_{n} \inf_{k} (s_{k+1} \cdots s_{k+n})^{1/n} = i, \qquad \lim_{n} \sup_{k} (s_{k+1} \cdots s_{k+n})^{1/n} = r,$$

and

$$\liminf_{n} (s_1 \cdots s_n)^{1/n} = c.$$

If i, p, c are any three numbers with $0 \le i \le p \le r$, then there is a positive sequence (s_n) which satisfies the above equalities for i and r, and such that

$$\lim_n \sup (s_1 \cdots s_n)^{1/n} = p.$$

Proof. We construct the sequences and omit the verifications, which consist of routine analysis; details are in [4].

If i=r, let $s_n=r$ for all n (or positive $s_n \to 0$ if r=0).

Suppose i < r. Choose a monotone nonincreasing sequence of positive numbers i_k converging to i. (If i > 0 we may take $i_k \equiv i$.) Choose a rational sequence $(r_k = p_k/q_k)$, p_k , q_k integers, such that p_k and $q_k - p_k$ tend to infinity and $i_k(r/i_k)^{r_k}$ converges to c. Let (s_n) consist of a sequence of cycles C_k , where each C_k is a sequence of r's of length p_k , followed by a sequence of i_k 's of length $q_k - p_k$.

This gives the first required sequence, for i, c, r. To obtain the second, for i, p, r, proceed as before but let the i_k 's precede the r's in each cycle C_k .

NOTE. $\Gamma(R)$ is a disk; let c(R) denote its radius. Define $c_1(B)$, $c_2(B)$, $p_1(B)$, and $p_2(B)$ as in the proof of Theorem 4.

THEOREM 8. If i, c, r are any three numbers with $0 \le i \le c \le r$, then there is an injective right shift R with i(R) = i, c(R) = c, and r(R) = r. If i, p_1 , p_2 , r are any four numbers with $0 \le i \le p_1 \le p_2 \le r$, then there is an injective two-sided shift B with i(B) = i, $p_1(B) = p_1$, $p_2(B) = p_2$, and r(B) = r. If i^- , c_1 , r^- , i^+ , c_2 , r^+ are any six numbers with $0 \le i^- \le c_1 \le r^- < i^+ \le c_2 \le r^+$, then there is an injective two-sided shift B with $i^-(B) = i^-$, $c_1(B) = c_1$, $r^-(B) = r^-$, $i^+(B) = i^+$, $c_2(B) = c_2$, and $r^+(B) = r^+$.

Proof. We exhibit the three asserted shifts by constructing the sequences of weights (s_n) , using the two constructions of Lemma 7 in suitable combinations; the verifications are then routine.

- (1) Use the first construction (of Lemma 7) directly.
- (2) Let $s_0=1$. For n>0, use the second construction (Lemma 7), with i=i, $p=p_1$, and r=r. Let $s_{-n}=t_n$ where (t_n) satisfies the first set of conditions (Lemma 7), with i=i, $c=p_2$, and r=r.
- (3) Let $s_0=1$. For n>0, use the first construction of Lemma 7, with $i=i^+$, $c=c_2$, and $r=r^+$. Let $s_{-n}=t_n$ where (t_n) satisfies the second set of conditions (Lemma 7), with $i=i^-$, $p=c_1$, and $r=r^-$.

Note. In (2), modification, or caution, may be required if $p_1 = p_2$. For $\Pi_0(B)$ is

actually the annulus of convergence of a power series involving the s_n ; here it is either a circle of radius $p_1 = p_2$, or empty. To ensure that it is indeed the circle, we need only proceed with caution in constructing the sequences (s_n) and (t_n) .

REFERENCES

- 1. R. Gellar, Cyclic vectors and parts of the spectrum of a weighted shift, Univ. of New Mexico, 1968, preprint.
- 2. P. R. Halmos, A Hilbert space problem book, Van Nostrand, Princeton, N. J., 1967, pp. 38-49.
- 3. R. L. Kelley, Weighted shifts on Hilbert space, Thesis, Univ. of Michigan, 1966, pp. 19-33.
 - 4. W. C. Ridge, Composition operators, Thesis, Indiana Univ., 1969, pp. 47-69.

Indiana University,
Bloomington, Indiana